Untuk semua bilangan bulat tidak-negatif n, buktikan dengan induksi matematik bahwa 20 + 21 + 22 + … + 2n = 2n+1 – 1

Untuk semua bilangan bulat tidak-negatif n, buktikan dengan induksi matematik bahwa 20 + 21 + 22 + … + 2n = 2n+1 – 1

Jawaban:
(i) Basis induksi.

Untuk n = 0 (bilangan bulat tidak negatif pertama), kita peroleh: 20 = 20+1 – 1.
Ini jelas benar, sebab 20 = 1 = 20+1 – 1

= 21 – 1
= 2 – 1
= 1

(ii) Langkah induksi. Andaikan bahwa p(n) benar, yaitu:
20 + 21 + 22 + … + 2n = 2n+1 – 1 adalah benar (hipotesis induksi). Kita harus menunjukkan bahwa p(n +1) juga benar, yaitu:

20 + 21 + 22 + … + 2n + 2n+1 = 2(n+1) + 1 – 1 juga benar. Ini kita tunjukkan sebagai berikut:
20 + 21 + 22 + … + 2n + 2n+1 = (20 + 21 + 22 + … + 2n) + 2n+1

= (2n+1 – 1) + 2n+1 (hipotesis induksi)
= (2n+1 + 2n+1) – 1
= (2 . 2n+1) – 1
= 2n+2 – 1
= 2(n+1) + 1 – 1

Karena langkah 1 dan 2 keduanya telah diperlihatkan benar, maka untuk semua bilangan bulat tidak-negatif n, terbukti bahwa 20 + 21 + 22 + … +132n = 2n+1 – 1¾

Originally posted 2022-03-29 16:13:27.